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A heuristic scheme is described for constructing Lyapunov v-functions, generalizing the classical method for constructing these 
functions from the first integrals of the equations of motion under investigation (or from the integrals of a comparison system). 
It is shown that the generalized scheme inherits a characteristic feature of the classical method: the Lyapunov functions are 
constructed as solutions of a certain completely integrable partial differential equation (or system of such equations). The form 
of this equation and its order are uniquely defined by a non-degenerate multi-parameter function V(x, a) + %, x ~ R n, 
a E R 'rq (where a is a parameter vector), which generalizes the classical linear combination of integrals. Methods are described 
for representing v-functions, in the course of which the traditional methods (the method of Chetayev combinations of integrals 
and the construction of Lyapunov functions as a non-linear function of integrals) are augmented by geometrical constructions 
in which the v-functions are sought in the form of envelopes of certain subfamilies of the function V(x, a) + %. The generalized 
scheme serves as a basis for deriving new, simple criteria for the asymptotic stability of the trivial solution in a transcendental 
problem of the stability of a system with two degrees of freedom in the critical case of two pairs of pure imaginary roots at 1 : 1 
resonance (the case of simple elementary divisors). © 2001 Elsevier Science Ltd. All rights reserved. 

1. T H E  C L A S S I C A L  S C H E M E  F O R  C O N S T R U C T I N G  V - F U N C T I O N S  

The most effective method for investigating stability problems is well-known to be the classical method 
of  constructing v-functions from the first integrals of the equations of motion, which goes back to the 
work of Lagrange [1], Lyapunov [2] and Routh [3, 4]. The simplest case is that in which a positive-definite 
first integral is known. The stability of the system follows from Lyapunov's First Stability Theorem. In 
a more complex situation, which requires explicit construction of such an integral, one generally uses 
the method of Chetayev combinations of integrals, closely associated with which is a Routh-Lyapunov 
theorem [3, 4], which yields an explicit construction of v-functions of this type. This procedure has been 
used to investigate the stability of many conservative systems (e.g. [5-20]). 

It is been shown that this approach is universal in the problem of  constructing sufficient conditions 
for the stability of an equilibrium in Hamiltonian systems and reversible systems with analytic right- 
hand side: v-functions of the direct method which satisfy Lyapunov's First Stability Theorem are sign 
definite integrals of  the system under  investigation. 

It is also well known that there is a wide range of non-conservative problems in which the v-functions 
belong to the space of first integrals of a certain auxiliary comparison system. In that case one usually 
applies the "energy approach", when the energy integral of the comparison system is considered as a 
Lyapunov function. The stability of steady motions of mechanical systems with dissipation has been 
investigated using combinations of integrals of a conservative comparison system [23-27] or using the 
generalized energy integral of the latter system [28]. 

The investigation of non-conservative problems has also been based on the construction of functional 
extensions of a combination of integrals of the comparison system. The basis for this modification of 
the classical method has been the study of  gyroscopic systems with complete dissipation, using a linear 
combination of integrals plus quadratic terms [29, 30], or using a combination of the complete energy 
and extended cyclic integrals., This device has also been used [31, 32] to investigate the stability of a 
gyroscope with dry friction. 

The formal scheme of the classical approach is as follows. Suppose we are considering the stability 
of  the trivial solution x = 0 of  a system of ordinary differential equations with fairly continuous right- 
hand sides 

=X(x),  x a R "  (1.1) 
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To construct the required Lyapunov functions, we fix a comparison system 

= Xo(x) (1.2) 

If Eqs (1.1) are Hamiltonian or reversible system (1.2) must be identified with (1.1). Let us assume 
that independent integrals of Eqs (1.2) are known: Fa(x),. . . ,  Fm_l(X), m ~< n. According to the idea of 
the approach, the v-functions are elements of the subset 

M=IF(x):  F = B ( F  t ..... F,n_l), B~Cr (Rm- ' ,R ' ) }  

of the whole set of integrals of Eqs (1.2). The required Lyapunov functions will be sought as elements 
of the following form in the set M: 

1) v(x) is a linear function of the integrals Fj(x); 
2) v(x) is a non-linear function of the integrals Fj(x); one usually takes v(x) to be a Chetayev 

combination of integrals 

V(X) = ~'.~jFj ,-I.-•l.[jFj 2, ~,j,~J.j = c o n s t  (1.3) 
) J 

This heuristic scheme may be augmented by geometrical constructions, which are not directly appli- 
cable in applied problems but are necessary for the description of the classical approach to be complete. 

There is a relation between the setM and partial differential equations (pde's) [33]. Let W(x, C) = C1F1 
+ ... C,,,-1Fr,,-1, C = (C1 . . . . .  Cm-1) be a non-degenerate combination of integrals. Then the set M coin- 
cides with the entire space of smooth solutions of a certain completely integrable system of first-order pde's 

~Z 
Ht(x ,p)=0 ..... Hl+n_m(x,p)=0, p c  R n, PJ = axj (1.4) 

for which W + C,,, is a complete Lagrange integral. This means that the system of equations 
pj -.-. OW/~j (j = 1 , . . . ,  n) is uniquely solvable for the m - 1 quantities Cj, and, after eliminating them 
from the remaining n - m  + 1 equations, it takes a form equivalent to (1.4). The dependence of/-/j on 
p is linear, since W + Cm depends linearly on Cj. In the limiting case rn = n (the comparison system 
(1.2) admits of a complete set of integrals), system (1.4) consists of a single linear equation 

~, Xoj(X)pj = 0 (1.5) 
j=l 

It is also known [33] that any solution z(x) of Eqs (1.4) may be obtained from the complete integral 
W + Cm by Lagrange variation of the arbitrary constants C/: 

z(x) = Cm(x)Fj(x) +...+ C ~  F~l(x) + C,,(x) 

where the vector of variations (C(x), Cm(x)) is a solution of the Pfaff equation 

m-I 
Y. WE~ dCj + dC m = 0 (1.6) 

j=l 

There is a geometrical interpretation of this method [33, 34]. Let n be an arbitrary regular/-surface 
in the space of the essential constants C1 .. . .  Cm(O <<- l <~ m - 1), and let (W + C,,)n be the restriction 
of the family (W + Cm) to the surface. Any solution z(x) of Eqs (1.4) is the envelope (at least local) 
of some /-parameter family ( W  + Cm)n (if l = 0, the envelope is the function ( W  + Cm)n itself). 
Hence it follows that the solution space of Eqs (1.4) (that is, the set M) consists of the envelopes of all 
possible families ( W  + Cm)n, with the subscript n running through the whole set of regular/-surfaces 
(0 ~< l ~< m - 1) in the space of arbitrary constants Cj. 

We now introduce further notation: MI will denote the subspace of envelopes of all possible families 
(W + Cm)n, when the subscript n runs through the whole set of regular/-surfaces in the space of arbitrary 
constants. Obviously 

m-I 
M= UMI 

I=0 
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The set M0 is the simplest to construct, since its elements are functions of the form W(x, C) + Cm, 
(C, Cm) = const. The other subspaces Mt are filled by envelopes. More detailed information on the 
structure of Min  the case n = m may be found in [35]. 

Thus, the classical scheme may be augmented. As the Lyapunov functions are solutions of the 
completely integrable system (1.4), they have one of the following representations: 

3) v(x) = Cl(x)Fl(x ) + . . .  + Cm_lFm_l(x ) + Cm(x), 
where (Cl(x) . . . . .  Cm(x)) is a solution vector of Eq. (1.6); 

4) v(x) is the envelope of some/-parameter family (W + Cm),~. 
Thus, the classical method of constructing Lyapunov functions from first integrals reduces to the 

procedures 1-4. 
Note that the representation of Lyapunov functions as envelopes of families of functions is typical 

for stability problems. Indeed, according to Chetayev's method, v-functions should be sought in the 
form (1.3). If Z~} ,  0, then v(x) is not an element of M0; therefore, v(x) belongs to the subset M1 U 
M 2 U . . .  U M J_'l. But this means that v(x) is the envelope of some family (W + Cm),t. The same 
conclusion holds when v is expressed as an arbitrary non-linear function of known integrals. 

2. A G E N E R A L I Z E D  H E U R I S T I C  SCHEME FOR CONSTRUCTING 
V-FUNCTIONS FROM FIRST INTEGRALS 

Regardless of the effectiveness of the classical approach, its domain of application is generally limited 
to deriving the sufficient conditions for the stability of equilibrium in a conservative (or almost 
conservative) system. The point is that the majority of Lyapunov functions that satisfy stability theorems 
for a non-conservative system (as is the case for v-functions in the instability problem) are not integrals 
of the system in question, or of the comparison system. 

We will describe a generalized heuristic method for constructing Lyapunov functions which is largely 
free from the above-mentioned shortcomings. The main idea is to assume that the desired Lyapunov 
functions belong to a certain function space generalizing the set M, which we will now describe. 

Suppose we are given a smooth q-parameter function V(x, c~) + Ctq, q ~> rn, where c~ = (cq . . . .  , czq_1) 
is a vector of arbitrary constants. Let us assume that this function satisfies a non-degeneracy condinon 

rank Vx.a= min (n, q - 1) (2.1) 

at every point of some range of values of the vectors x and cc 
We will also assume that the complete integral of Eqs (1.4), that is, the function W (x, C) + C,,,, is 

a special case of the function V (x, c0: 

W(X, C)  -,~ (V -t- O~q ) I~.m-I (2.2) 

where X m-I = (a(C), aq(C)) is a regular parameterized (m - 1)-surface in the space of arbitrary constants 
% 

Let x denote a regular/-surface in the space of arbitrary constants ct and Ctq, passing through a fixed 
point ((ct 0, tzq0)), and let KI (x0, % Ctq0) IV] be the set of envelopes (in the neighbourhood of x0) of all 
possible families (V + aq) I n, where n runs through the whole set of regular/-surfaces that pass through 
the point (or0, CZq0 ). 

Definition [36]. The space 

min(q-l,n- I) 
r[v] = U T~[V], T~[V] = U K~°"~°'%°)[V] 

I=0 (x0,ct0,Otq0) 
(2.3) 

will be called a functional extension of the solution space of Eqs (1.4), and S = q - n will be called the 
degree of the space T[V]. 

Obviously, M C_ T[V]. 
It follows from this definition that T[V] is the set of envelopes of all possible subfamilies of the 

functions V + C~q, along with the set M, which admits of W(x, C) + Cm as a generating function. In the 
classical case (m - n ~< S ~ 0) the definition of the set T[V] is identical verbatim with the geometrical 
description of the solution space of a completely integrable system of first-order pde's whose complete 
integral is the function V(x, (z) + c~0 [33]. Hence, it follows that in the classical case T[V] is simply the 
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solution space of a certain system of equations of type (1.4). The number of equations in the system 
i n n - q  + 1. 

Let us consider the non-classical case S > 0. Condition (2.2) guarantees the "structural compatibility" 
of  M and T[Y][36]: M C_ T[V], and moreover Mt C Tt [V] (1 = 0 . . . . .  h - 1). Note that of all the subspaces 
Tt[V], the simplest to construct is T0[V], since it consists of functions of the form V(x, ¢t) + % 
(ct, %)  = const. 

An important question in the theory of such spaces is their relation to differential equations. Here 
it is essential to prove theorems establishing a relation between the space T[V] and the set of singular 
solutions of the linear Pfaft equation associated with the function V and covariant with respect to 
variation of the degree S; it is also important to formulate theorems establishing a relation between 
the space T[I/] and the space of all solutions of an integrable pde of  higher order which is not covariant 
with respect to S. 

Consider the Pfaff equation associated with V 

q-I 
5". Vdj (x, at)dtxj + dOtq = 0 (q > n) (2.4) 
j=l 

A solution vector (ct(x), tXq(X)) of  Eq. (2.4) is said to be singular if 

rank ~ (at, otq) / ~gx < n (2.5) 

Theorem 1 [37]. A function z(x) belongs to the space T[V] if and only if a singular solution (ct(x), 
%(x)) of Eq. (2.4) exists satisfying the condition 

z(x) = V(x, a(x)) + %(x) (2.6) 

The classical version of Theorem 1 (m - n ~< S ~< 0) is a theorem that provides a rigorous basis for 
the Lagrange method of  variation of arbitrary constants as applied to first-order systems of pde's. 
Condition (2.5) is always satisfied in that case, since the differentials dctj(x) are linearly dependent by 
virtue of Eq. (2.4). 

Using (2.4) and (2.6), we will derive alternative forms of the degeneracy condition (2.5), which are 
independent of the vector (ct(x), %(x)) and its derivatives with respect to x. Let S = 1. Condition (2.5) 
has the form 

det ot x = 0 (2.7) 

since the differential dCtq is linearly dependent, by (2.4), on the differentials dtxy (j = 1 . . . .  , n). 
Differentiating Eq. (2.6) with respect to x, we obtain, by (2.4), 

z~ = V~(x, at(x)) (2.8) 

Differentiating (2.8) with respect to x, we get 

( z -  V)xx = V~x-atx, detV,,x*0. 

where the derivatives are evaluated with respect to the explicitly occurring variables. Hence, it follows 
that txx and (z - I0,~ are equivalent matrices. Therefore, condition (2.7) together with (2.8) becomes 

det(z(x) - V(x, at))xx = O, zx = Vx(x, at) (2.9) 

Equation (2.9) is an n-dimensional analogue of the Monge-Amp~re equation. In the special case 
n = 2 it is the classical Monge-Amp~re equation 

r t - s  2 = a r + 2 b s + c t + 9 ,  r = z x m ,  S = Z x l x  2 , l=Zx2x2 (2.10) 

whose coefficients a, b, c and cp are functions of xl, x2, z and of the partial derivatives Zxl, zx2. In the case 
considered, these coefficients satisfy the additional condition 

c(dxl)2 _ 2bdxjdx2 + a(dx2)2 -_ d2V(x, at (x, zx)), ~ = b 2 - ac (2.11) 

and therefore Eq. (2.10) is of parabolic type. 
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For every function z(x) E T[V], let us ignore those values of x for which the rank of the matrix 
(z - V)x~ is seen to decrease. Subject to this reservation, we have the following theorem. 

Theorem 2 [37]. The space T[V] of degree S = 1 is precisely the set of smooth solutions z(x) of an 
equation of the Monge-AmpSre type (2.9). 

Now consider the case S = 2. An alternative form of (2.5) is 

F(x, z(x), zx, Zxx, Zxxx) = 0 (2.12) 

Theorem 3.? The space T[V] of degree S = 2 is precisely the set of smooth solutions z(x) of some 
third-order equation (2.12). 

The case S I> 3 has not been investigated. 
Note [37] that increasing the degree S by one yields an extension of the space T[V] in such a way 

that it becomes a degenerate subset of its extension. This procedure induces inclusion of the equation 
corresponding to T[V] among the intermediate integrals of the equation corresponding to the extended 
space. Thus, Eq. (1.5) is an intermediate integral of Eq. (2.9), Eq. (2.9) is an intermediate integral of 
Eq. (2.12), and so on. 

Thus, in accordance with the heuristic requirement of the generalized approach, the required 
Lyapunov functions are elements of the space T[V], that is, integrals of a certain integrable pde (or a 
system of pde's if S < 0). 

In classical cases (m - n ~< S ~< 0), these spaces are functionally dosed if the function V(x, a)  depends 
linearly on aj: for any set of functions T[V] and any smooth function B(xl . . . . .  xk), we have B(G1 . . . . .  
Gk) E T[V]. 

However, if S > O, the space T[V] is no longer functionally closed, since it is described by a non- 
linear pde. Nevertheless, the following lemma establishes that these spaces are "partially functionally 
closed". 

L e m m a .  Let V(x, et) + etq(V(x, t~) = O~lUl(X ) + . . .  -t- %_lUq_l(X), q > n) be a non-degenerate family 
of functions which depends linearly on the constants %-, and let {G1 . . . .  , Gk} (k ~ n - 1) be an arbitrary 
set of independent functions from the subspace T0[V]. Then for any smooth function B(yl . . . . .  Yk), 

B(Gt ..... Gk) E T[V] 

Proof. It follows from the assumptions of the lemma that Gj may be expressed in the form 

Gj=~tjJ)U~+. +aW,,  w . . _  q_lVq_! "l-O[q 

where ct/0) are fixed values of the arbitrary constants cti. Consider the non-degenerate function 
W" + Ck + l, where 

(J) + ~(J) w'=ZC G = U, y_.C, C,= on t 
i=J i=a k/=J ) j=t 

(2.13) 

It follows from this formula that IV* + Ck+l is a special case of a function V(x, a) + %, and therefore T[W'] C 
T[V]. The space T[I,V'] is functionally closed, since IV" + Ck+l is the complete integral of a linear homogeneous 
pde of type (1.5) if k = n - 1, or the complete integral of a system of linear equations of type (1.4) ifk < n - 1. 
Since the family {G] . . . . .  Gk} belongs to the subset T0[W'] C T[W'], we have B(Gl . . . . .  Gk) E T[W'] C T[V]. 

In the case k = n the statement of the lemma is meaningless: the function B(G1, . . .  , Gn) does not 
necessarily belong to the space T[V]. 

This lemma considerably simplifies the procedure of looking for v-functions in the space T[V]. For 
example, a sign definite function may be constructed using Chetayev's method of combinations of 
integrals, taking the integrals G1 . . . .  , Gk to be solutions of pde's. Pozharitskii's theorem on the criteria 
for B(G],  ... , Gx) to be sign definite [38] remains valid, as do the results of investigations of 
B(G1, . . .  , Gk) based on the Hessian of this function [39]. 

Thus, let V(x, ¢~) + %(V(x, et) = etlUl(x) + . . .  + tXq_lUq_](x), q > m )  be a non-degenerate family of 
functions which depends linearly on the constants %, a special case of which is a linear combination of 

*KRASIL'NIKOV, P. S., Functional extensions in stability problems. Doctorate dissertation, 01.02.01, Moscow, 1996. 
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the integrals W + Cm, W = C1F1 + . . .  + C,n-lFm-] of the comparison system (1.2); let T[I/] be a functional 
extension of degree S = q - n of  the set 

M = { F ( x ) :  F =  B(F I . . . . .  Fro_l), B ~ C r ( R m - I , R I ) }  

The generalized scheme for constructing v-functions from first integrals is as follows. The required 
Lyapunov functions are sought over the set T[V] in one of the following forms: 

1) o (x) is a linear function of the integrals Uj(x) (j = 1, . . . ,  q - 1); 
2) o (x) is a non-linear function of independent integrals Uj(x) (j = 1 , . . .  , k, k ~< n - 1); o(x) may 

be constructed as a Chetayev combination of integrals: 

k k 
2 ~.j, laj = const o = E ~.jUj + E ~tjUj, 

j=~ j=l 

3) o (x) is an element of the space T[V] with the most general representation 

O(x) = O~ I (x )U  I (x) + . . .  + ~ q - I  (X)Uq-I (x)  + O~q(X) (2.14) 

where ((t~l(x), . . .  , ~q(X)) is a solution vector of Eqs (2.4) satisfying the degeneracy condition (2.5). 
4) o (x) is the envelope of some /-parameter family (V + tXq)~Z, where n = (a(C1 . . . . .  Ct), 

%(C1 . . . .  , Cl)) is a regular/-surface in the space of arbitrary constants tx and aq. 
As shown above, the generalized scheme retains all the specific features of the classical approach, 

only augmenting it by having recourse to the solution set of higher-order equations. 
One of the differences between the generalized scheme and the classical scheme is as follows. The 

construction of the required functions as non-linear functions of integrals Uj(x) does not exhaust the 
entire set T[V]; this implies the need to use procedures 3 and 4 of the scheme in applied problems. The 
most general form of the function o (x) as an element of the space T[V] is represented by formula (2.14). 

It was proved in the dissertation cited in footnote 2 that the majority of solved problems in stability 
theory in which v-functions were constructed in explicit form satisfy the generalized scheme. 

3. N E W  C R I T E R I A  F O R  A S Y M P T O T I C  S T A B I L I T Y  A T  1:1  R E S O N A N C E  

Let us consider the problem of the stability of an autonomous system of the form 

=X(x), X(0)=0, xCR 4 (3.1) 

where X(x) is a smooth vector field and the matrix (ax/ax)0 has pure imaginary eigenvalues 3.1 and ~z 
such that ~.1 = ~,2. Let us assume, moreover, that kl has simple elementary divisors. 

It has been shown [40] that this problem is algebraically unsolvable; the surface S separating the 
domain of asymptotic stability from the instability domain in the parameter  space is transcendental. It 
has been shown [41] that this algebraic unsolvability is not "total": algebraic pieces of the surface have 
been constructed. 

We will derive new and simpler criteria for asymptotic stability. The complex-valued normal form of 
the equations in the third approximation is 

~, = k,Z, + A, ,z2~, + A,2z,z2~ 2 + A,Z,Z, Z2 + A2z21~2 + A3z~z 2 + A4z2~, 

z2 = 3.,z2 + A2IZI~IZ 2 + A22Z~ 2 + AsZ21~I + A6ZlZ2Z 2 + a7z?~ 2 + As~,Z ~ 

(3.2) 

where 

Z I = X  I + i x  2, Z 2 =x3+ix 4, Aim =atm+ibtm, Am =am+ibm 

In polar coordinates rj, 0j associated with the variables zj, Zj by the formulae 

zj = a/~-j exp(i0j), zj = ~ - j  exp(- i0j)  

Eqs (3.2) have the following form (where 0 = (01 - 02) is the resonance angle) 
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b=f (r ,r2,0) j= l ,2  

~Rj  = ajmti 2 +a~2rlr z +~ r~---lr2I(a ! +a2)cosO+(b  2 - h i ) s i n e ] +  

+r  2 r~-~-Ir~ (a 3 cos 0 - b 3 sin 0) + r ar 2 (a 4 cos 20 - b 4 sin 20) 

R2 = a2~rlr2 + a22r 2 + r2 r~lr~ [(a6 + as)cos0 + (b 6 - bo)sin 0]+ 

+t i r~tr5 (a s cos 0 + b5 sin O) + t) r 2 (a 7 cos 20 + b 7 sin 20) 

= (b2a - b~l + b 7 cos 20 - a 7 sin 20)~ + (b22 - b~ 2 - a~ sin 20 - b 4 cos 2O)r 2 + 

+[(b 6 + b 8 - b 2 - b~ )cos O + (a 8 - a 6 + a 2 - a~ ) sin O] r ~ r  2 + (b 5 cos O - a 5 sin O)~r~ -½ - 

- ( a  3 sin O + b~ cos O)r~r~ -½ 

(3.3) 

The required Lyapunov function will be constructed using the generalized scheme. As comparison 
equations, we choose the model system 

~ = 3 ~ '  /.2=aa0H' ° = a / /  OH (3.4) 
arl Or z 

which has already been investigated [42] and is a special case of Eqs (3.3). 
Here  

! ! 
H ~l(rl + 

+ 2(asrt - asr 2) r~-~lr ~ sin 0 - (b 4 cos 20 + a 4 sin 20)r s r 2 

is the normal form of  the Hamiltonian function at multiple resonance. Equations (3.4) are integrable: 
the integral combination W + Cs, where 

W = C s ( H - L j ( r  I +r2))+c2(r i+r2 )2, Cj=const  

is a complete Lagrange integral of  the linear homogeneous first-order pde corresponding to system 
(3.4). Consequently, the space of  first integrals of  Eqs (3.4) has the form 

r[ w l = ToI WIU T~ I WIU T2[ W ] 

Consider the function 

v=a,  2 + 2a2r, +%r] + 2ti r.~l~l~ (0C4 Cos0+(X5 sin 0)+ 2r2 r~lr~ (0c6 cos0+oc7 sin0)+ 
+2rlr z (ctg cos 20 + ¢% sin 20) (3.5) 

of  which W is a special case. Here ~j are essential constants. The space T[V] is an extension (of degree 
S = 7) of the whole set T[W]: 

T[VI= To[VIUT~[VIUT2[V], TflWIETj[V] 

Let  us search for auxiliary functions over the subset T2[V], which is filled out by the envelopes of all 
possible two-parameter families (V + ctl0)n, dim rc = 2. To that end, we consider a two-dimensional 
surface rr in the space of arbitrary constants u] . . . . .  ct10 of the function (V + ctl0), 

~ j = y j l v l + y j 2 v 2 ,  j = l  ..... 9; ~ i0=(v2+v22) /2  

where vl, and v2 are local coordinates on that surface, and y~ are parameters. It is obvious that the 
envelope of the family (V + al0)rc is 
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2 
I ~ [Tl, fi2 +2?2,fir2 +?3kr22 +2fi r r~lr~(?4k c°s0+ys* sin0)+ V =--'-2 k=l 

+ 2r 2 r~lr2 (y6 k cos 0 + ?Tk sin 0) + 2rj r 2 (?Sk cos 20 + ?9, sin 20)] 2 

Evaluating the derivative of V along the vector field of Eqs (3.3), we obtain 

5 
= r~[x0 + ~ (×ml cosm0+×m2 sinm0)] 

m=l 

x 0 = Gsk 5 + G4 k4 + G3k 3 + G2 k2 + Gik + G O 

×jj = n/k(B4jk 4 + B3jk 3 + B2jk 2 + Bjjk + Bo:) 

X2j =k(D3jk 3 +D2jk 2 +Dl j k+Doj ) ,  X3j ='vl-k(L3jk 3 +L2jk 2 +Ll jk )  

×4)=k~(Muk+M0j)  , × s j = N j  k~ ;  j = l , 2  

where k = rl/r2 is a variable quantity and the coefficients Gj, BO, Dij, Lij, M O, Nij, are quadratic functions 
of the quantity ?q and linear functions of the parameters of the problem. For example, 

2 
G s = 2 ~  yi j[2allyi j  +asY4j +bsYsj], 

j=l  

2 
G O = 2 ,~, y3j[2a22'Y3j + aays) - b3Y7j] 

j=l  

The expressions for the other coefficients are omitted. The constants Yij are chosen in such a way that 
the coefficients of the trigonometric functions of odd degrees vanish: 

B i j = I _ . 3 j = L 2 j = L I j = N ) = O ,  j = l , 2 ;  i = 0  ..... 4 

We obtain an algebraic system of 18 non-linear equations of the form 

2 9 (3.6) 
~, T Rv~ik?jk=O, m = l  ..... 18 

k=l i , )=l 

The coefficients R~ are linear functions of the parameters ao., bij, aj, bj. The  number of unknown quantities 
?ik is 18. The expressions for R~ are omitted as they are very cumbersome. 

We will show that system (3.6) has non-trivial solutions Yik. To that end, we will reduce Eqs (3.6) to 
a form in which the existence of a non-trivial family of solutions will be a corollary of the Implicit Function 
Theorem. 

As Eqs (3.6) depend linearly on the parameters of the problem, they may be written as follows: 

DA = 0 (3.7) 

A = (a I i,al2,al + a2, b2 - bl,a3, b3,aa,b4,a21,a22,as,bs,a6 + as, 

b6 - b8,  aT, 67,  b21 - bl I, b22 - bl 2, b6 + b8 - b2 - b4 ,  a2 - a t  - a6 + a8 ) t 

where D is an 18 x 20 matrix whose elements dij are quadratic functions of Yik and A is the coefficient 
vector of system (3.3). 

Calculations show that D is a non-singular matrix, since it has a non-zero minor of order 18 in 
its upper left corner. Hence it follows that the system is solvable for the first I8 elements of the vector 
A, and the dependence of these elements on the 18 parameters Yik of the function V is also non- 
degenerate. The unique feature of this representation of Eqs (3.6) is the inversion of the problem: the 
quantities Y/k are chosen arbitrarily, while the parameters of system (3.3) are defined as solutions of 
Eqs (3.7). 

Hence it follows, by the Implicit Function Theorem, that the dependence of the elements of A on 
the parameters ?i, is locally solvable for "/ik everywhere in the parameter space of the system (except 
for certain manifolds of zero measure). 

Let y~ be a non-trivial solution of Eqs (3.6), depending on the parameters of Eqs (3.3). Let us consider 
the Lyapunov function V" which is the restriction of V to this solution. The derivative of V" is 
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I~" = r:[×~(k) + Y (×~,, cos mO + ×~,2 sin m0)] (3.8) 
m=2,4 

Substitutingy = tg(0/2) in the trigonometric polynomial on the right of (3.8), we have 

9" = r~A(y)(I + y2)-2 (3.9) 

A(y)  = L4y a + L3Y 3 + L.zy 2 + Lly+ L o 

L,=,,o-Xz,+,,,,, g3=2(,,~2-2x;2), L2=2(,,o-3X;,) 

L l=2(X~2+2x42), Lo=~;+X2l+X4, 

In the singular case 0 = re, when this substitution is degenerate, the function 12° may be evaluated 
using the formula 

~'* = r~ L 4 (3.10) 

It will vanish if L4 = 0, but then one of the roots of the polynomial A(y) "departs" to infinity. It follows 
from (3.9) and (3.10) that the function I7" is sign-definite in the domain 

r l ~ 0 ,  r 2 ~ 0 ,  0 ~ 0 < ~  (3.11) 

if and only if, for any k > 0, the polynomial A(.v) has no real roots, including the point at infinity (in 
the planes rl = 0, !"2 = 0, the function 17" does not vanish, if one assumes that Go # 0, Gs * 0). 

It follows from the expression for the function V" that it is always negative definite, with the exception 
of degenerate cases in which it is sign-definite (for an analytical description of these degenerate cases 
see [43]). In what follows we will disregard this case. 

Theorem. Le t  Go # O, G'5 * 0 and suppose that the real algebraic equation A(y) = 0 has no real 
roots for any k > 0, including the point at infinity. Then an equilibrium of the complete system is 
asymptotically stable if 

{x0 - ×2J + x41} > 0  (3 .12 )  

and unstable otherwise. 

Proof. It follows from the conditions of the theorem that the function/~ is sign-definite in the domain 
(3.11) (terms of higher order of smallness, which were omitted when deriving Eqs (3.2), do not affect 
the sign of /7 ,  since the function V" and the right-hand sides of Eqs (3.2) are homogeneous polynomials 
in zj, ~'j). It follows from (3.9) that 

sign 9 *  = sign L 4 = s ign(× ;  - Xzt + x41 ) 

Let us consider the case in which inequality (3.12) holds. Since V" is negative definite, it follows that 
V*IT" < 0, so that V" satisfies all the conditions of Lyapunov's Asymptotic Stability Theorem. 

If the inequality sign in condition (3.12) is reversed, the functions V and I;'* will have the same signs 
in the neighbourhood oft1 = re = 0. Hence, by Lyapunov's Instability Theorem, the equilibrium position 
is unstable. 

Thus, we have algebraic criteria for asymptotic stability in the domain I~" < 0. Consequently, the 
transcendental surface S, separating the domain of asymptotic stability from the instability domain in 
the parameter space, is algebraic where 17 ° > 0. 
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